光学的厚さ τ

・ τ が大きい→ I_1 が小さくなる→観測が難しい

・観測したい場所によって波長を変える

原始惑星系円盤の模式図

https://www.riken.jp/press/2017/20170302_2/

TABLE 1 Observed and derived quantities of young stars orbited by dust														
Star	Spectral type	1950 RA (h min)	1950 dec. (°)	$V_{\odot}(\text{opt.})$ (km s ⁻¹)	Т _в (¹² СО) (mK)	V _☉ (CO) (km s ⁻¹)	ΔV (FWHP) (km s ⁻¹)	D (pc)	R (AU)	T _{co} (at <i>R</i>) (K)	Assumed incl. (°)	Age (10 ⁶ yr)	М _{Н₂} (М⊕)	M_{d} (M_{\oplus})
49 Cet τ1 Eri	A3V F6V	1 32 2 42 5 01	-15 -18	9 25	50 <50	12	8	70 14	140 80	52 40	60 60	10 >100	2 <0.06	0.02-1 0.01
HD32509 HD34700 HD35187	GOV A2/3IV/V	5 17 5 20	5 24		160 ≼120	21	4.6	60 150	50 150	40 50	30 60	<10 5	80 <15	1 10
HD36112 HD233517	A5IVe K2	5 27 8 19	25 53	48	440 ≼30	17	2	150 40(??)	140 20	60 54	15 60	3	250 <1	>0.5
TW Hya HD98800 HB4796	K7Ve K6V	10 59 11 19 12 33	-34 -24 -39	14 13	1,200 <15 <80	12	0.6	100(?) 50(?) 75	140 20 50	20 55 100	60 60	3 <10 3	20 <0.5 <7	20 0.3
HD135344 HD141569	F4Ve A0Ve	15 12 15 47	-36 -3	-6	400 130	3 -8	2.2 7.6	100 200	100 130	38 60	15 60	<10	6-140 20-460	30 >0.1
HD143006 HD144432	G5V A9/F0V	15 55 16 03	-22 -27	-1	120 <80	-2	3.4	57 100	120 100	20 43	35 60	<10 <10	1 <2	5 20
V718 Sco 51 Oph	A8III/IV B9.5Ve	16 10 17 28	-22 -23	-12	120 <80	-2	5	200 70	140 140	46 130	45 60	<10 3	30–900 <6	15

Zuckerman+(1995)

			TAE	BLE 1 Obs	served and	Age (10 ⁶ yr)	(M_{\oplus})	d by	/ dust			
Star 49 Cet r1 Eri HD32509 HD34700 HD35187 HD36112 HD233517 TW Hya HD98800 HR4796 HD135344 HD141569 HD143006 HD144432 V718 Sco	Spectral type A3V F6V A2V G0V A2/3IV/V A5IVe K2 K7Ve K6V A0V F4Ve A0V F4Ve A0Ve G5V A9/F0V A8III/IV	1950 RA (h min) 1 32 2 42 5 01 5 17 5 20 5 27 8 19 10 59 11 19 12 33 15 12 15 47 15 55 16 03 16 10	1950 dec. (°) -15 -18 26 5 24 25 53 -34 -24 -39 -36 -3 -32 -27 -22	V _☉ (opt.) (km s ⁻¹) 9 25 48 14 13 6 -6 -1	T _B (¹² CO) (mK) 50 <50 <50 160 ≤120 440 ≤30 1,200 <15 <80 400 130 120 <80 120	10 >100 6 <10 5 3 <10 3 <10 3	2 <0.06 <5 80 <15 250 <1 20 <0.5 <7 6-140	: <i>R</i>)	Assumed incl. (°) 60 60 60 15 60 0 60 60 15 60 35 60 35 60 45	Age (10 ⁶ yr) 10 >100 6 <10 5 3 <10 3 <10 3 <10 <10 <10 <10	$\begin{array}{c} M_{\rm H_2} \\ (M_{\oplus}) \\ 2 \\ < 0.06 \\ < 5 \\ 80 \\ < 15 \\ 250 \\ < 1 \\ 20 \\ < 0.5 \\ < 7 \\ 6-140 \\ 20-460 \\ 1 \\ < 2 \\ 30-900 \end{array}$	M_d (M_{\oplus}) 0.02-1 0.01 >0.2 1 10 >0.5 20 0.3 0.2 30 >0.1 5 20 15
L8 Eart	h Mas	SS ≈	1 Ju	ipiter	Mass	<10 <10 <10 <10 3	20-460 1 <2 30-900 <6			Zuck	erman	+(1995)

円盤の隙間に惑星形成?

https://alma-telescope.jp/news/mt-post_646

双極分子流 (bipolar outflow)

双極分子流 (bipolar outflow)

・吹き出しの間欠性

(B. Saxton (NRAO/AUI/NSF); A. Plunkett et al.; ALMA (NRAO/ESO/NAOJ)) https://almascience.eso.org/alma-science/ism-starformation-and-astrochemistry ≥ 3.2

図3.2 星形成過程の観測.星形成開始時を時間原点としてある.観測対象(細枠)を観測手段(太枠)と矢印で結んだ.

光波長変換によりテラヘルツ波を高感度に検出
室温で動作するテラヘルツ波領域の小型非破壊検査装置の実現へ https://www.riken.jp/press/2017/20170302_2/

田崎亮ほか、2017、遊星人、26、46

地球に似た軌道を持つ惑星の誕生現場を若い星のまわりで初めて観測 <u>https://alma-telescope.jp/news/mt-post_646</u>

塚本裕介, 2022, 遊星人, 31, 6

B. Saxton (NRAO/AUI/NSF); A. Plunkett et al.; ALMA (NRAO/ESO/NAOJ)) https://almascience.eso.org/alma-science/ism-star-formation-andastrochemistry