2019 Feb. 19 The 20th Symposium on Planetary Sciences

Analyses on dust lifting processes simulated by a high-resolution LES for the Martian atmospheric boundary layer

*Kuriki Murahashi¹,

Kohei Suto², Seiya Nishizawa³, Masaki Ishiwatari¹, Masatsugu Odaka¹, Kensuke Nakajima⁴, Shin-ichi Takehiro⁵, Ko-ichiro Sugiyama⁶, Hirotaka Ogihara², Yoshiyuki O. Takahashi⁷, Yoshi-Yuki Hayashi⁷

Hokkaido Univ., 2. Japan Meteorological Agency,
 RIKEN/R-CCS, 4. Kyushu Univ., 5. Kyoto Univ.,
 National Inst. Tech. Matsue College, 7. Kobe Univ.

🔊 Aoba Science Hall, Tohoku University, Miyagi, Japan

Dust in the Martian atmosphere

 Dust in the Martian atmosphere greatly influences optical depth and temperature structure. (Smith, 2009, etc.)

Global Dust Storm https://www.jpl.nasa.gov/

Dust Devils (Recorded by Rover Spirits) http://mars.nasa.gov/mer/gallery/press/spirit/20050819a.html

Dust in the Martian atmosphere

- Dust in the Martian atmosphere greatly influences optical depth and temperature structure. (Smith, 2009, etc.)
- Kahre et al. (2006) simulates seasonal variability of dust distribution on Mars General Circulation Model (MGCM).

Dust lifting schemes

Wind Stress (KMH scheme; Kahre et al., 2006)

 $F_W = \alpha_W \times 2.3 \times 10^{-3} \tau^2 \left(\frac{\tau - \tau^*}{\tau^*}\right) \begin{bmatrix} F_W : & \text{Dust flux [kg/(m^2 s)]} \\ \alpha_W : & \text{Efficiency factor} \\ \tau : & \text{Surface wind stress} \\ [N/m^2] \end{bmatrix}$

 τ^* : Threshold value [N/m²]

Based on observational results on the Earth (Sahara desert). (Westphal et al., 1987)

Dust Devil (DDA scheme; Newman et al., 2002)

$$F_D = \alpha_D F_s(1-b) \quad b = \frac{p_s^{\chi+1} - p_{con}^{\chi+1}}{(p_s - p_{con})(\chi+1)p_s^{\chi}} \quad \chi \equiv \frac{R}{c_p}$$

 F_D : **Dust flux [kg/(m² s)]**

- F_s : Sensible heat flux [W/m²]
- α_D : Efficiency factor [kg/J]
- p_s : Surface Pressure [Pa] R: Specific gas constant p_{con} : Pressure at the top of PBL [Pa] c_p : Specific heat capacity
- Based on the thermodynamics of dust devils as a heat engine. (Rennò et al., 1998)
 - Thermal efficiency is used for expressing dust flux.

Problems of parameterization

- Schemes have been developed without considering details of wind structures.
 - Wind stress schemes are suspected to include effects of dust devil schemes.

- Adjusting parameters are necessary in order to simulate observational results.
 - Wind stress threshold value should be decreased compared to experimental value. (Greeley and Iversen, 1985)

The highest resolution LES for the Mars

- Nishizawa et al. (2016)
 - Domain : Horizontal 19.2 km, Vertical 21 km
 - Horizontally periodic boundary conditions.
 - Resolution 5, 10, 25, 50, 100 m
 - About 4.8 x 10¹⁰ grid points in 5 m resolution.
 (1 time snapshot has 1.2 TB I)
 - (1 time snapshot has 1.2 TB !)
- Statistics on vortices are investigated.
 - e.g. vortex radius distribution of 62.5 m height at LT = 14:30

Vorticity distribution

Purpose of this study

- Our purpose is to reconsider the dust lifting schemes with examining relationship between wind microstructures and large scale convective structures.
 - What are characteristics of the wind field?
 - How much is the strength of the wind stress?
- We make hypothesis that dust devils are very important phenomena to consider dust lifting.
 - In observational results, there are many dust devils on the Mars.
- In this study, we examine LES with several km domain.

Model / Settings

- SCALE-LES ver.3 (Nishizawa et al., 2015; Sato et al., 2015)
 - http://r-ccs-climate.riken.jp/scale/
 - 3D fully compressible non-hydrostatic equations model.
 - Developed by RIKEN/R-CCS.
- Surface model
- Louis-type bulk method (Louis 1979, Uno et al., 1995).
- Thermal forcing
- The heating rate and surface temperature are given by one-dimensional simulation by Odaka et al. (2001)

Initial State

 10 - 100 m resolution : Stable stratified stationary atmosphere with tiny random temperature perturbations at LT = 0:00

(LT = Local Time)

- 5 m resolution : interpolated 10 m result at LT = 14:00.
- Integration period
 - 5 m resolution : from LT = 14:00 15:00
 - The dataset is every 5 minutes.

Convective cellular structures (14:30)

Surface stress probability density distribution

Bin width : 0.002 Pa

- Surface stress exceeds threshold value of dust lifting in the analyzed period.
- Threshold value 0.03 Pa obtained by experimental results.

(Greeley and Iversen, 1985)

Horizontal distribution of vortices (14:30)

Red dot : Vortex, Cross mark : strong stress (> 0.017 Pa)

9.2 km

Vortices align along to convective cell boundaries.

We suppose that strong surface stress is produced by strong vortex.

- Dust flux in intense/weak vorticity regions
- Dust flux estimated by KMH scheme
 - Threshold value au^* : 0.03 Pa
- 2 kinds of regions are considered.
 - Intense vorticity region : inside 50 m from vortex centers with intensity over $15 \times \sigma$ (σ : Standard deviation)
 - Weak vorticity region : Other region

Strong vortices are important for dust lifting.

Summary

- We are analyzing LES result for Martian atmospheric boundary layer aiming for reconsidering dust lifting parameterization schemes used in MGCM.
- Analysis of 5 m resolution results
 - Surface stress exceeds threshold value of dust lifting in the analyzed period (30 minutes).
 - Strong vortices are important for dust lifting.
 - In intense vorticity regions, total amount and average of dust flux is higher than other region.
- Considering strong vortices is important for reconsidering dust lifting parameterization scheme (future work).

References

- Greeley, R., and J. D. Iversen, 1985: Wind as a Geological Process on Earth, Mars, Venus, and Titan., Cambridge Univ. Press., 333 pp
- Kahre, M. K., et al., 2006: Modeling the Martian dust cycle and surface dustreservoirs with the NASA Ames general circulationmodel, J.G.R, 111, 25
- Louis, J.-F., 1979: A parametric model of vertical eddy fluxes in the atmosphere, Boundary Layer Meteorol., 17, 187–202.
- Mulholland, D. P., et al., 2013: Simulating the interannual variability of major dust storms on Marsusing variable lifting thresholds, Icarus, 223, 344-358
- Nishizawa, S., et al., 2016: Martian dust devil statistics from high-resolution largeeddy simulations, Geophys. Res. Lett., 43, 4180–4188
- Odaka M., 2001: A numerical simulation of Martian atmospheric convection with a two-dimensional anelastic model: A case of dust-free Mars, Geophys. Res. Lett., 28, 895-898
- Rennò, N. O., et al., 1998: A simple thermodynamical theory for dust devils, A.M.S., 55, 3244-3252
- Smith, M. D., 2009: THEMIS observations of Mars aerosol optical depth from 2002–2008, Icarus, 202, 444-452
- Westphal, D. L., et al., 1987: A two-dimensional numerical investigation of the dynamics and microphysics of saharan dust storms, J.G.R., 92, 3027-3049
- Wilson, R. J., and Hamilton, K., 1996: Comprehensive model simulation of thermal tides in the Martian atmosphere, J.A.S, 53, 9, 1290-1326

How to detect vortex structures Rankine Vortex Fitting (Nishizawa et al., 2016)

$$u(r) = \begin{cases} Ur/R & r < R\\ UR/r & r > R \end{cases}$$

- u :Tangential wind speed [m/s]
- r:Vortex radius [m]
- Maximum tangential
- R : Radius at u = U [m]

Before apply the fitting, we extract points by vorticity value which has over some level of standard deviation

Vortex Structures distribution

9.2 km

9.2 km

Dust in the Martian atmosphere

- Dust in the Martian atmosphere greatly influences optical depth and temperature structure. (Smith, 2009, etc.)
- Various space-time scale dust phenomena exist.

http://mars.nasa.gov/mer/gallery/press/spirit/20050819a.html

MGCM calculation including dust processes

Kahre et al. (2006) simulates seasonal variability of dust distribution.

Dust lifting schemes used in MGCM

- Kahre et al. (2006) uses 2 types of dust lifting parameterization schemes.
 - Wind stress lifting schemes
 - The seasonal variability of dust amount can be simulated.

Kahre et al. (2006)

Wind stress lifting schemes

KMH scheme (Kahre et al., 2006)

$$F_W = \alpha_W \times 2.3 \times 10^{-3} \tau^2 \left(\frac{\tau - \tau^*}{\tau^*}\right)$$

$$F_W$$
: **Dust flux [kg/(m² s)]**

- α_W : Efficiency factor
 - τ : Surface wind stress [N/m²]
 - τ^* : Threshold value [N/m²]

Parameters in Kahre et al. (2006)

$ au^*$	$lpha_W$	
10 × 10 ⁻³	0.02	
22.5 × 10 ⁻³	0.1	
35 × 10 ⁻³	0.45	

- Based on observational results on the Earth (Sahara desert). (Westphal et al., 1987)
- Adjusting to the Martian conditions. (Kahre et al., 2006)
 - Atmospheric density, gravitational acceleration.

Dust devil lifting schemes

DDA scheme (Newman et al., 2002)

$$F_D = \alpha_D F_s(1-b) \qquad b = \frac{p_s^{\chi+1} - p_{con}^{\chi+1}}{(p_s - p_{con})(\chi+1)p_s^{\chi}} \qquad \chi \equiv \frac{R}{c_p}$$

$$F_D : \text{Dust flux [kg/(m^2 s)]} \qquad n \in \text{Surface} \qquad \text{Specific gas}$$

- F_s : Sensible heat flux [W/m²]
- α_D : Efficiency factor [kg/J]

	$(I \ S$	$F(OR)(\Lambda)$	•	110	P	
Surface				0		
p_{s} :	Surrace		ъ	Specific gas		
13	Pressu	ire [Pa]	R :	con	stant	
	_					
con ·	Pressu	ire at the	c_n :	Spe	cific heat	
	top of PBL [Pa]		P			
				capacity		

- Based on the thermodynamics of dust devils as a heat engine. (Rennò et al., 1998)
- Thermal efficiency is used for expressing dust flux.
 - With the higher sensible heat flux, kinetic energy of convection becomes larger.
 - With the higher PBL altitude, the conversion rate of kinetic energy from sensible heat flux becomes larger.
 - Therefore the amount of dust flux increases.

Purpose of this study

- Our purpose is to reconsider the schemes with examining relationship between wind microstructures such as dust devils and large scale convective structures.
 - What are characteristics of the wind field?
 - How much is the strength of the wind stress?
- We suppose that dust devils are very important
- In this study, we examine LES with several km domain.
 - Our results can be applied to MGCM.
 - The most high-resolution MGCM can resolved up to several km. (~ 11 km; Takahashi et al., 2011)

Vertical wind (bottom level z = 2.5 m)

Vertical wind [m/s] (horizontal)

9.2 km

Upward wind region forms network-like structures.

Surface wind stress

Vertical wind [m/s] (horizontal) Surface wind stress [Pa] (horizontal)

Vertical wind fields of each simulation 5 m resolution (horizontal) 10 m resolution

19.2 km

19.2 km

Surface stress probability density distribution

Bin width : 0.002 Pa

- Result of 5 m resolution is greatly differs from those of more than 10 m resolution results.
- Only 5 m resolution result has the points exceeding threshold value.
 - Threshold value 0.03 Pa obtained by experimental results.

(Greeley and Iversen, 1985)

Amount of Dust Flux (Whole area)

Time [hour]

- Calculated by wind stress scheme in each threshold case
- Dust is lifted the most at 14:50
 - However difference of value is only a few times

Horizontal distribution of dust flux

Dust flux is calculated using wind stress scheme (KMH scheme) of Kahre et al. (2006)

火星大気大循環モデル (MGCM) におけるダスト

- かつてはダスト分布を固定して火星の大気循環が 調べられてきた (Wilson and Hamilton, 1996)
 - ダストストームが発生するのに十分な風速が得られなかった
 - MGCM の中でダストストームを起こすには, 小スケール (<~ 100 km) な風の揺らぎが重要であることを示唆
 - 細かい風の流れを考慮する何らかの仕組みが必要
- 領域モデルによる対流計算によって、小スケールの流れを 考慮すれば十分な風速が得られることがわかった (Odaka, 2001)
- Mars Global Surveyor によって 数多くのダストデビルが見つかる (2000 年以降)
 - GCM で表現できない小さな風の ゆらぎをもたらす現象として ダストデビルが注目されはじめた

ダストデビルの通った跡 https://apod.nasa.gov/apod/ap031230.html

はじめに

ローカルダストストーム

10 m 10 km 10,000 km

グローバルダストストーム

https://www.jpl.nasa.gov/

https://www.jpl.nasa.gov/spaceimages/images/largesize/PIA15959_hires.jpg

ダスト巻き上げを考慮した MGCM 計算

- Mulholland et al. (2013): ダストストームにおける
 ダスト量の年々変動が再現できたと主張
 - グローバルダストストームの隔年変動を大雑把に再現 (4~7年周期)
 - 平均風応力閾値をダスト量に合わせて変化することを仮定
 - 南半球から北半球へのダスト輸送を仮定

Mulholland et al. (2013) における仮定

- 平均風応力閾値をダスト量に合わせて変化することを仮定
- ダストが多く溜まると saltation が生じにくくなり, 巻き上げの風応 力閾値を下げられると仮定

By Po ke jung (Own work) CC BY 3.0

- 北半球から南半球へのダスト輸送を仮定
- MGCM の計算では北半球へのダストの偏在化が進むので, ダストデビルなど何らかの小スケール現象によって南半球へ ダストの輸送が生じていることを仮定

To improve parameterization

Most high-resolution MGCM can resolved up to several km. (~ 11 km; Takahashi et al., 2011)

 Most high-resolution LES can resolved isotropic 5 m, (Nishizawa et al., 2016)

Nishizawa et al でいったこと

- Nishizawa et al. (2016)
 - 計算領域 水平 19.2 km, 鉛直 21 km
 - 空間解像度 5, 10, 25, 50, 100 m
 - 日変化する熱強制を外部から与える
 - LT = 0:00 から計算開始 (LT : 現地時刻)
- 渦に関する統計量を調べた
 - LT = 14:30 の高度 62.5 m 付近における 渦のサイズ分布など
- しかし,地表付近における速度場や応力場については未調査
 - ダストの巻き上げを考える上では 地表付近を観察する必要がある

Summary

- Dust lifting parameterization schemes in MGCM have problems.
 - Schemes have been developed without considering details of wind structures.
- Our purpose is to reconsider schemes with examining wind structures.
- We are investigating high-resolution LES to consider relationship between wind microstructures and large scale convective structures.
 - At all times, surface stress is sufficiently strong to dust lifting.
 - Strong vortices are important for dust lifting.